Mesophase and size manipulation of itraconazole liquid crystalline nanoparticles produced via quasi nanoemulsion precipitation.

نویسندگان

  • Naila A Mugheirbi
  • Lidia Tajber
چکیده

The fabrication of drug nanoparticles (NPs) with process-mediated tunable properties and performances continues to grow rapidly during the last decades. This study investigates the synthesis and phase tuning of nanoparticulate itraconazole (ITR) mesophases using quasi nanoemulsion precipitation from acetone/water systems to seek out an alternative pathway to the nucleation-based NP formation. ITR liquid crystalline (LC) phases were formed and nematic-smectic mesomorphism was achieved via controlling solvent:antisolvent temperature difference (ΔTS:AS). The use of ΔTS:AS=49.5°C was associated with a nematic assembly, while intercalated smectic A layering was observed at ΔTS:AS=0°C, with both phases confined in the nanospheres at room temperature. The quasi emulsion system has not been investigated at the nanoscale to date and in contrary to the microscale, quasi nanoemulsion was observed over the solvent:antisolvent viscosity ratios of 1:7-1:1.4. Poly(acrylic acid) in the solvent phase exhibited a concentration dependent interaction when ITR formed NPs. This nanodroplet-based approach enabled the preparation of a stable ITR nanodispersion using Poloxamer 407 at 80°C, which was unachievable before using precipitation via nucleation. Findings of this work lay groundwork in terms of rationalised molecular assembly as a tool in designing pharmaceutical LC NPs with tailored properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Characterization of Zinc Sulfide Nanoparticles and Nanocomposites Prepared via a Simple Chemical Precipitation Method

In this research zinc sulfide (ZnS) nanoparticles and nanocomposites powders were prepared by chemical precipitation method using zinc acetate and various sulfur sources. The ZnS nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible and fourier transform infra-red. The structure of nanoparticles was studied using X-ray diffraction pattern. The ...

متن کامل

Synthesis and magnetic investigation of cobalt ferrite nanoparticles prepared via a simple chemical precipitation method

In this research cobalt ferrite (CoFe2O4) nano-crystalline powders were prepared by simple chemical precipitation method using cobalt sulfate. The CoFe2O4 nanoparticles were characterized by X-ray diffraction, scanning electron microscopy  and Fourier transform infra-red spectroscopy. The crystallite size of CoFe2O4 nanoparticles was calculated by Debye–Scherrer formula. The effect of precursor...

متن کامل

A comparative study on the dispersion of CuO-ZnO-Al2O3 nanoparticles over HZSM-5 via batch co-precipitation, semibatch co- precipitation and combined co-precipitation-ultrasound methods

A series of CuO-ZnO-Al2O3 nanoparticles over HZSM-5 were successfully prepared using different methods of batch co-precipitation, semibatch co-precipitation and combined co-precipitation-ultrasound. Nitrates of copper, zinc and aluminum were used as precursors, while Na-ZSM-5 was employed as composite support and sodium carbonate was used as precipitant agent. The effects of preparation methods...

متن کامل

The Stage Dependent Effect of Capping Agent Introduction in the Synthesis of Magnetite Nanoparticles

In this paper, three techniques to obtain capped magnetite nanoparticles were compared. In the formation of magnetite nanoparticles via the co-precipitation route, capping agents were introduced pre-, simultaneously with, or post-addition of the precipitating agent, ammonia. The amino acids L-glutamine and L-glutamic acid were used as the capping agents. Characterization via TEM, pXRD, EDX, and...

متن کامل

Liquid-crystalline nanoparticles: Hybrid design and mesophase structures

Liquid-crystalline nanoparticles represent an exciting class of new materials for a variety of potential applications. By combining supramolecular ordering with the fluid properties of the liquid-crystalline state, these materials offer the possibility to organise nanoparticles into addressable 2-D and 3-D arrangements exhibiting high processability and self-healing properties. Herein, we revie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V

دوره 96  شماره 

صفحات  -

تاریخ انتشار 2015